68 research outputs found

    Towards Energy Neutrality in Energy Harvesting Wireless Sensor Networks: A Case for Distributed Compressive Sensing?

    Full text link
    This paper advocates the use of the emerging distributed compressive sensing (DCS) paradigm in order to deploy energy harvesting (EH) wireless sensor networks (WSN) with practical network lifetime and data gathering rates that are substantially higher than the state-of-the-art. In particular, we argue that there are two fundamental mechanisms in an EH WSN: i) the energy diversity associated with the EH process that entails that the harvested energy can vary from sensor node to sensor node, and ii) the sensing diversity associated with the DCS process that entails that the energy consumption can also vary across the sensor nodes without compromising data recovery. We also argue that such mechanisms offer the means to match closely the energy demand to the energy supply in order to unlock the possibility for energy-neutral WSNs that leverage EH capability. A number of analytic and simulation results are presented in order to illustrate the potential of the approach.Comment: 6 pages. This work will be presented at the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, US, December 201

    Joint Sensing Matrix and Sparsifying Dictionary Optimization for Tensor Compressive Sensing.

    Get PDF
    Tensor compressive sensing (TCS) is a multidimensional framework of compressive sensing (CS), and it is advantageous in terms of reducing the amount of storage, easing hardware implementations, and preserving multidimensional structures of signals in comparison to a conventional CS system. In a TCS system, instead of using a random sensing matrix and a predefined dictionary, the average-case performance can be further improved by employing an optimized multidimensional sensing matrix and a learned multilinear sparsifying dictionary. In this paper, we propose an approach that jointly optimizes the sensing matrix and dictionary for a TCS system. For the sensing matrix design in TCS, an extended separable approach with a closed form solution and a novel iterative nonseparable method are proposed when the multilinear dictionary is fixed. In addition, a multidimensional dictionary learning method that takes advantages of the multidimensional structure is derived, and the influence of sensing matrices is taken into account in the learning process. A joint optimization is achieved via alternately iterating the optimization of the sensing matrix and dictionary. Numerical experiments using both synthetic data and real images demonstrate the superiority of the proposed approache

    EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS

    Get PDF
    ABSTRACT A generic M-ary continuous phase modulation (CPM) schem

    Deriving Machine to Machine (M2M) Traffic Model from Communication Model

    Get PDF
    © 2018 IEEE. The typical traffic models proposed in literature can be considered as heuristic models since they only reflect the stochastic characteristic of the generated traffic. In this paper, we propose a model for M2M communications that generates the traffic. Therefore, the proposed model is able to capture a wider picture than the state-of-the-art traffic models. The proposed model illustrates the behaviour of M2M uplink communication in a network with multiple-access limited information capacity shared channels. In this paper, we analyzed the number of transmitted packets using the traffic model extracted from our proposed communication model and compared it with the state-of- the-art traffic models using simulations. The simulation results show that the proposed model has a significantly higher accuracy in estimating the number of transmitted packets compared with the liteature model

    6G Opportunities Arising from Internet of Things Use Cases: A Review Paper

    Get PDF
    The race for the 6th generation of wireless networks (6G) has begun. Researchers around the world have started to explore the best solutions for the challenges that the previous generations have experienced. To provide the readers with a clear map of the current developments, several review papers shared their vision and critically evaluated the state of the art. However, most of the work is based on general observations and the big picture vision, and lack the practical implementation challenges of the Internet of Things (IoT) use cases. This paper takes a novel approach in the review, as we present a sample of IoT use cases that are representative of a wide variety of its implementations. The chosen use cases are from the most research-active sectors that can benefit from 6G and its enabling technologies. These sectors are healthcare, smart grid, transport, and Industry 4.0. Additionally, we identified some of the practical challenges and the lessons learned in the implementation of these use cases. The review highlights the cases’ main requirements and how they overlap with the key drivers for the future generation of wireless networks
    • …
    corecore